利来国际w66客服

/2018/12654Date:Feb05,,Shihhua1stRd.,LinyuanDistrict,KaohsiungCity832,Taiwan()Thefollowingsample(s)was/weresubmittedandidentifiedonbehalfoftheclientas:MaterialName:PolypropyleneImpactCopolymerColor:ClearStyle/ItemNo.:3003,3003H,3004,3005,3005H,3010,3015,3020,3040,3040C,3064H,3080,3084,3084H,3090,3155,3200W,3204,3354,3504,4084,4204,4304,4604,6025MaterialComponent:PolypropyleneImpactCopolymerSampleSubmittedBy:FormosaPlasticsCorporationSampleReceivingDate:Jan30,2018TestingPeriod:Jan30,2018~Feb05,2018TestMethodResults:Pleaserefertonextpage(s).Unlessotherwisestatedtheresultsshowninthistestreportreferonlytothesample(s),exceptinfull,Serviceprintedoverleaf,availableonrequestoraccessibleat/terms_and_,forelectronicformatdocuments,subjecttoTermsandConditionsforElectronicDocumentsat/terms_,indemnificationandjuri

  • 博客访问: 449711
  • 博文数量: 24
  • 用 户 组: 普通用户
  • 注册时间:2019-01-22 12:53:58
  • 认证徽章:
个人简介

二、旅游度假区选址的区位条件(1)区域经济水平;区域是旅游经济的生长点和支撑点,建设资金的主要来源。

文章分类

全部博文(136)

文章存档

2015年(311)

2014年(339)

2013年(302)

2012年(356)

订阅

分类: 网易新闻

利来国际w66备用,4,062亿元截止2016年上半年万能险资产规模达4062亿资产规模领军行业资料来源:寿险总部投资管理中心万能保险:以稳健为基追求长期回报11平安万能险参与投资项目举例平安-甘肃交通债权投资计划平安-广东省高速债权投资计划平安-二滩水电债权投资计划万能保险:以稳健为基追求长期回报12保险投资:主要投资方向为事关国计民生的重要行业平安坚持发挥保险资金长期性的独特优势,坚持价值投资,积极创新保险资金运用方式,提升资金配置效率,积极通过债权投资计划、股权投资计划等多种形式支持国家基础建设、重大民生工程等项目建设,积极参与养老、健康医疗等产业链发展。一、2018年工作谋划及开展情况(一)精心谋划部署。利来国际备用A、按时参加评标,不迟到、不早退,不无故缺席B、评标时应携带有效身份证明,接受核验和监督C、不委托他人代替评标D、遵守交易中心评标区相关规定9、根据国铁工程监〔2017〕27号《铁路建设工程评标专家库及评标专家管理办法》,评标专家有下列(BCD)违法违规行为,责令改正,记3分;情节严重的,记6分;情节特别严重的,取消担任评标委员会成员资格,从专家库中除名,不再接受其评标专家入库申请。广大知识分子是社会的精英、国家的栋梁、人民的骄傲,实现中华民族伟大复兴中国梦,需要推动全社会特别是广大知识分子弘扬爱国奉献精神,奉献国家。

会计的监督职能是对经济活动的合法性、合理性、有效性实施的审查。一是党政领导重视,建立健全普法教育和依法治理领导小组及其办公室,把“六五”普法工作纳入议事日程,做到定期研究部署,同时,有分管领导负责,职责明确,工作制度健全,领导小组组长由乡党委书记担任,领导小组下设办公室,做到工作开展有计划、有检查、有落实;二是各村委会和企事业HYPERLINK/fanwen/\t_blank单位相应成立普法领导小组,加强法制宣传工作的领导;三是落实了“六五”普法骨干,并将其进行了培训,充分发挥骨干作用。利来国际最老牌2003年开始,山东省发改委将中华发电与山东电力间的最低购电量从5500小时减为5100小时。1.从课后习题中选取;2.完成练习册本课时的习题。

阅读(218) | 评论(127) | 转发(102) |

上一篇:w66利来

下一篇:利来国际W66

给主人留下些什么吧!~~

赵经纬2019-01-22

刘婉精美的舞台呈现配上严重缺失舞台剧特质的电视剧化、空洞、平庸的剧本,都阻碍着戏剧的进一步发展。

(4)美国纽约①纽约第七大道王子—卡尔文·克莱恩(CalvinKlein1942~今)卡尔文·克莱恩——纽约第七大道王子/设计风格: 卡尔文·克莱恩是一个完美主义者,除了要求服装作品及广告宣传细节部分符合他原先的想法外,也极力保持自己整洁完美的形象,喜欢土色及中间色调,甚至连他个人生活物件都是褐色及白色系列。

大口兼悟2019-01-22 12:53:58

ChemicalLaboratory-Kao.,:KE/2018/12646Date:2018/2/5Page:,SHIHHUA1STRD.,LINYUANDISTRICT,KAOHSIUNGCITY832,TAIWAN()Thefollowingsample(s)was/weresubmittedandidentifiedby/onbehalfoftheapplicantas:SampleDescription:POLYPROPYLENEHOMOPOLYMERStyle/ItemNo.:1003,1005,1005N,1005T,1009,1020,1020L,1020T,1024,1024T,1030T,1040,1040F,1040U,1080,1100,1120,1120D,1124,1124H,1202F,1250D,1252F,1350D,1352F,1352S,1450D,1600A,1600D,1600N,1700D,1900D,1990,2020,2020H,2020S,2080,2100,2100M,2100T,6005P,:POLYPROPYLENEHOMOPOLYMERColor:CLEARSampleReceivingDate:2018/01/30TestingPeriod:2018/01/30TO2018/2/5SampleSubmittedBy:FORMOSAPLASTICSCORPORATION============================================================================================TestRequested:Asspecifiedbyclient,withreferencetoRoHS2011/65/EUAnnexIIandamendingDirective(EU)2015/863todetermineCadmium,Lead,Mercury,Cr(VI),PBBs,PBDEs,DBP,BBP,DEHP,DIBPcontentsinthesubmittedsample(s).TestMe

李可欣2019-01-22 12:53:58

跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不,PAGEPAGE1模块综合测评(时间:150分钟 满分:150分)一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。。 条件概率第2章 独立性学习目标1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).答案思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.答案答案 事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.答案(1)条件概率的概念一般地,对于两个事件A和B,在已知发生的条件下发生的概率,称为事件B发生的条件下事件A的条件概率,记为.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=.②利用条件概率,有P(AB)=.梳理事件B事件AP(A|B)P(A|B)P(B)知识点二 条件概率的性质1.任何事件的条件概率都在之间,即.2.如果B和C是两个互斥的事件,则P(B∪C|A)=.0和10≤P(B|A)≤1P(B|A)+P(C|A)题型探究命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;解 设A={在班内任选1名学生,该学生属于第一小组},B={在班内任选1名学生,该学生是团员}.解答类型一 求条件概率(2)求这个代表恰好是团员代表的概率;解答(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.解答用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型.(2)计算P(A),P(AB).(3)代入公式求P(B|A)=反思与感悟跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=____.答案解析命题角度2 缩小基本事件范围求条件概率例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率解答引申探究1.在本例条件下,求乙抽到偶数的概率.解答解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).解答解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.将原来的基本事件全体Ω缩小为已知的条件事件A,原来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)=这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.反思与感悟跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解答解 设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次。

闫浩明2019-01-22 12:53:58

“会计”最早起源于中国,历经很长时间,才形成现在意义上的“会计”。,  2017年12月30日,习近平总书记给莫斯科大学中国留学生回信,肯定同学们心向祖国、追求进步,鼓励同学们弘扬留学报国的光荣传统,胸怀大志,刻苦学习,早日成长为可堪大任的优秀人才,把学到的本领奉献给祖国和人民,让青春之光闪耀在为梦想奋斗的道路上。。行政关系:苏州市下辖(五市七区)张家港市、常熟市、太仓市、昆山市、吴江市,吴中区、相城区、平江区、沧浪区、金阊区,以及苏州工业园区和苏州高新区虎丘区。。

岛本须美2019-01-22 12:53:58

 条件概率第2章 独立性学习目标1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).答案思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.答案答案 事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.答案(1)条件概率的概念一般地,对于两个事件A和B,在已知发生的条件下发生的概率,称为事件B发生的条件下事件A的条件概率,记为.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=.②利用条件概率,有P(AB)=.梳理事件B事件AP(A|B)P(A|B)P(B)知识点二 条件概率的性质1.任何事件的条件概率都在之间,即.2.如果B和C是两个互斥的事件,则P(B∪C|A)=.0和10≤P(B|A)≤1P(B|A)+P(C|A)题型探究命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;解 设A={在班内任选1名学生,该学生属于第一小组},B={在班内任选1名学生,该学生是团员}.解答类型一 求条件概率(2)求这个代表恰好是团员代表的概率;解答(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.解答用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型.(2)计算P(A),P(AB).(3)代入公式求P(B|A)=反思与感悟跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=____.答案解析命题角度2 缩小基本事件范围求条件概率例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率解答引申探究1.在本例条件下,求乙抽到偶数的概率.解答解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).解答解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.将原来的基本事件全体Ω缩小为已知的条件事件A,原来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)=这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.反思与感悟跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解答解 设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次,知识点4:平行四边形的特征和特性两组对边分别平行的四边形,叫做平行四边形。。根据企业特点选用若干体系要素加以组合,一般包括与管理活动、资源提供、产品实现以及测量、分析与改进活动相关的过程组成,以文件化的方式成为组织内部质量管理工作的要求。。

安德王高延宗2019-01-22 12:53:58

化操作流程的形式给出。,理想的肿瘤标志物的标准特异性100%灵敏度100%器官特异性与肿瘤大小或分期有关能进行疗效观察与预后有关可靠的预测价值肿瘤标志物升高早于临床检测肿瘤标志物的临床应用:高危人群肿瘤筛查肿瘤的早期发现肿瘤的诊断.鉴别诊断与分期肿瘤疗效的评估肿瘤复发的指标肿瘤的预后判断TM评价治疗有效性方案 (Beastall,1991)无效:TM浓度与治疗前相比下降50%改善:TM浓度与治疗前相比下降50%有效:TM浓度与治疗前相比下降90%显效:TM浓度下降至临界值以下肿瘤标志物临床联合应用肿瘤标志物命名TM是1978年Herberman在美国国立癌症研究所(NCI)召开的“人类免疫及肿瘤免疫诊断”会上提出的。。在舞台技术性大幅提升的情况下,戏剧返璞归真,加强剧作和演出的精神内涵越发显得迫切。。

评论热议
请登录后评论。

登录 注册

利来国际游戏平台 利来国际最给利的老牌 利来国际w66客服 w66利来国际老牌 利来国际旗舰厅
利来娱乐w66 利来国际官网平台 利来国际娱乐平台 w66利来国际 w66历来国际
利来国际旗舰版 利来国际公司 w66.cm利来国际 利来国际旗舰厅app 利来国际w66备用
wwww66com利来 w66.com 利来国际最给利的老牌最新 利来国际官网平台 利来国际w66平台
绥化市| 东方市| 台州市| 双流县| 靖宇县| 贵州省| 罗平县| 都江堰市| 溆浦县| 利川市| 屯留县| 名山县| 上杭县| 河源市| 洛宁县| 林甸县| 炎陵县| 九江市| 抚顺市| 合水县| 曲麻莱县| 娱乐| 黄龙县| 甘孜县| 海阳市| 泽库县| 长治市| 万载县| 沈丘县| 福海县| 黑龙江省| 新郑市| 龙岩市| 巨野县| 边坝县| 永城市| 密山市| 萨迦县| 睢宁县| 揭西县| 铜陵市| http://m.97729931.cn http://m.77229702.cn http://m.67354858.cn http://m.06657016.cn http://m.00393192.cn http://m.09830885.cn